×

工作兴趣和强项

  • 我思维活跃,思考数学问题比较快,能够很同学们很好的沟通,擅长把难的问题简单化的教给大家,精通数学解析几何,熟悉教材,绘画基础好,能够很好的进行课堂组织,充分利用肢体语言,调动学生们学习积极性。平时喜爱看数学报纸,解析数学难题,看国际性数学比赛,活跃思维,提高教学能力,还喜欢和同学们一起进行数学题立体动手能力

科研&社会实践

  • 厚普高中组教学大赛一等奖

  • 教室技能大赛二等奖

工作经历

  • 2017-08
    长春希望高中 
    主要负责高中的数学,对他们进去授课讲解、修改作业。最重要的是沟通,所谓沟通就是一座桥梁,只有沟通了才能出师生关系融洽,最终我还是做到了。不过通过这么久的实习生活,我深深体会到了教师着职业的伟大和老师的艰辛。我从中吸取了许多宝贵的经验,发现了每个老师都会有不同的教学风格。实习锻炼了我们的实践教学能力、提高了对教育工作的认识,在实践中体会了教书育人的重大责任。通过实践我的教育技能有了阶段性的提高,增强了竞争能力。
  • 2018-06
    学思辅导班 
    主要负责助教工作,对同学们的问题进行讲解,批改试卷,和老师一起备课做教案,看管学生们上晚自习并进行知识拓展

教育历史

  • 2020-06
    教育开始日期: 2016-08 

    教育学校

    吉林师范大学

    教育学位

    本科

    教育专业

    数学与应用数学

按类型筛选:

按年分类:

浅谈高等数学与中等数学的联系

李思彤
会议文件 长春日报

摘要

中数教学研究

李思彤
会议文件 数学学院学报

摘要

试论数学美

李思彤
会议文件 数学周报

摘要

核心课程

  • 解析几何

    坐标几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。 解析几何(英语:Analytic geometry),又称为坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。

  • 抽象代数

    抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。 抽象代数包含群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数也是现代计算机理论基础之一。

  • 实变函数

    以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。

  • 离散数学

    离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

  • 常微分方程

    常微分方程,属数学概念。学过中学数学的人对于方程是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。

  • 概率论

    概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。

  • 拓扑学

    拓扑学(topology),是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。 拓扑英文名是Topology,直译是“地志学”,最早指研究地形、地貌相类似的有关学科。拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼茨,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理。

  • 近世代数

    近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

证书

  • 2017-02
    全国英语四级证书
  • 2018-02
    全国英语六级证书
  • 2019-03
    全国普通话二甲
  • 2019-06
    全国计算机二级